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Abstract. The energy of the metastable vacuum in a complex magnetic field has been 
computed for the Hamiltonian field theory version of the king model in (1 + 1)D, using 
finite-lattice methods. Evidence is found for an essential singularity at the phase boundary, 
as predicted by the droplet model. 

1. Introduction 

The analytic structure of the free energy along a phase boundary has been a subject 
of intermittent discussion for many years (for reviews, see Binder 1976, Domb 1976). 
Here we shall only be concerned with the 2~ Ising model, which has a first-order 
phase transition line at magnetic field h = 0, temperature T < T,. The question then 
concerns the structure of the free energy in the ‘spin-up’ phase, say, as one continues 
from h > 0, where the spin-up state is stable, to h < 0, where it is metastable. 

The presently accepted view (Fisher 1967, Andreev 1964, Langer 1967) is that 
the metastable state decays by the formation and growth of clusters or ‘droplets’ of 
overturned spins. Correspondingly, its free energy acquires an imaginary part, and a 
cut in the complex h plane, with branch point at h = O .  The droplet model predicts 
that this branch point is an essential singularity, with a discontinuity across the cut of 
the form (Giinther er a1 1980) 

ImF(h  + i e ) = - B l h  exp(-A/lh/), h < O .  (1) 

Now a singularity of this form is very hard to detect by standard numerical methods. 
The exponentially small term (1) is ‘non-perturbative’ in character, and is not seen 
at all in conventional low-field series expansions. Thus the early investigations reached 
various and conflicting conclusions regarding the existence and nature of any branch 
cut (Domb 1976, Binder 1976). 

More recent series work has generally supported the droplet model picture. Enting 
and Baxter (1980) performed high-field series expansions at two temperatures below 
the critical point, and concluded that the behaviour of their coefficients was consistent 

+ Permanent address: Research School of Physical Sciences, The Australian National University, Canberra, 
Australia 2600. 

@ 1982 The Institute of Physics 1247 



1248 C J Hamer 

with the predicted essential singularity. Baker and Kim (1980) have approached the 
problem more indirectly. Using as raw data the low-temperature low-field series 
expansion coefficients of Baxter and Enting (1979), they constructed low-field series 
expansions for the magnetisation at fixed, finite temperature. The asymptotic 
behaviour of these coefficients at large order appeared to be linearly divergent. This 
demonstrates a zero radius of convergence for the series, and an essential singularity 
of the predicted type. These results have been further analysed by Lowe and Wallace 
(1980). 

Finite-lattice techniques off er the means of investigating this problem more directly. 
In the present paper we study the Hamiltonian field theory version of the Ising model 
in ( 1  + 1 ) ~  (Fradkin and Susskind 1978). The field theory equivalent of free energy is 
the ground-state energy. Using finite-size scaling techniques (Hamer and Barber 
1981a, b), we set out to compute the energy of the metastable ground state, or ‘false 
vacuum’, for complex values of h. Then we may test directly for the existence of the 
predicted discontinuity. 

The results of the investigation may be briefly summarised. The finite-lattice 
eigenvalues were found to converge in a rather irregular fashion for complex h. This 
unfortunately precludes the use of sequence extrapolation techniques (Hamer and 
Barber 1981b, Hamer 1981), and so the finite-lattice method loses much of its power. 
Nevertheless, evidence of a discontinuity was found, and estimates of its magnitude 
were made by an extrapolation technique. They are in good agreement with the 
predicted form, equation (1). 

The layout of the paper is as follows. In § 2, the problem is formulated in the 
field theory framework, and the method of calculation is briefly outlined. In § 3 the 
results are presented, while 8 4 contains some discussion. 

2. Formalism 

The field theory Hamiltonian of the Ising model in ( 1 + i ) ~  is (Fradkin and Susskind 
1978) 

M 

Here the index m labels sites on a spatial lattice, while the time variable is taken to 
be continuous. The mi are Pauli matrices acting on a two-state spin variable at each 
site. Equation (2) is a low-temperature representation in which the coupling x plays 
the role of a temperature variable, and h is the magnetic field. The total number of 
sites is M, and periodic boundary conditions are assumed. The critical point lies at 
x = x c = l .  

The field theory equivalent of the free energy is the ground-state energy, Eo, of 
the Hamiltonian (2). Below the critical coupling, we know that there are in fact two 
‘ground states’ which are degenerate at h = 0, one with predominantly spins up 
(u3 = + l ) ,  and the other with predominantly spins down (u3 = - 1). Let us denote 
their energies by E: and Eo respectively. 

These quantities obey certain symmetry relationships in the complex h plane. First 
of all, they are real analytic: 

E i ( h )  =[E; (h*) ]* .  (3) 
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Secondly, since the Hamiltonian is symmetric under the transformation 

r 3 ( m ) +  - r 3 ( m ) ,  all m 

h + - h  

then it follows that 

E t ( h ) = E z ( - h ) .  

(4) 

These relationships imply that the analytic continuations of E ;  and Eo to the entire 
h plane may be related to their values in the first quadrant (i.e. h R z O ,  hI2O where 
hR, hI are the real and imaginary parts, respectively, of the magnetic field). 

Our object, then, is to calculate EA for negative hR, where the spin-up state is 
the metastable or 'false vacuum' state, and to check whether it has a discontinuity 
across the negative h axis of the form (1). 

To this end, calculations have been made of the eigenvalues of the Hamiltonian 
(2) on a sequence of finite lattices up to size M = 9 .  The generation of the low- 
temperature basis states, and of the matrix elements of H connecting them, was 
carried out by standard methods (Hamer and Barber 1981a). To find the eigenvalues 
of the resulting matrix, double precision subroutines from the EISPACK library were 
used. Unfortunately, it is impossible to use iterative procedures (such as the Lanczos 
method or the conjugate gradient method) to calculate the low-lying eigenvalues when 
h is complex, and H is non-Hermitian. This restricts the size of the matrices, and 
consequently the lattice sizes M, which can be dealt with. 

3. Results 

The first order of business is to identify the metastable 'false vacuum' state. For this 
purpose, the average magnetisation (u3) was computed for each state; and some typical 
plots of energy versus magnetisation are shown in figure 1. For small IhRI, the plots 
have the classic 'double well' shape (figure l ( a ) ) ,  and the false vacuum may be easily 
identified. As a working criterion, it was found satisfactory to define the two vacua 
as those states with 1(u3)1 > t ,  whose energies had minimum real part. 

For larger IhRI, the second well disappears (figure l ( b ) ) ,  and there is no longer 
any identifiable false vacuum. By making plots such as figure 1, one may estimate 
roughly the position of the stability limit for the metastable state; the results are 
shown in figure 2. Note that the two fixed points of this curve are at the critical point 
x = 1, h R  = 0, where the distinction between the two phases disappears, and at x = 0, 
lhRl = 2, where the magnetic field term is just strong enough to counterbalance the 
pairing term in the Hamiltonian (2) for a single overturned spin. We have not explored 
the detailed shape of the limiting curve near the critical point. 

We may now study the energy of the metastable state as a function of complex 
magnetic field h. It is convenient to subtract out the leading-order effect of the 
magnetic field, and to define a reduced energy per site 

E:' = Eof/M f h (6) 

for each lattice size M. Figure 3 shows a typical graph of Im(E;') as a function of h I  
at fixed negative hR, for various lattice sizes M.  It can be seen that the finite-lattice 
eigenvalues converge to the bulk limit ( M  + co) in a rapid but rather irregular fashion 
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Figure 1. Plot of energy E / M  versus magnetisation ((T~), at fixed coupling x = 0.4, for 
lattice size M = 9. ( a )  is at (real) magnetic field h = -0.5; ( b )  is at h = - 2 . 5 .  The figure 
shows the minimum energy state in each magnetisation bin (not all bins are occupied). 
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Figure 2. The stability limit for the metastable state as a function of (real) magnetic field 
h R  and coupling x. The boundary is crudely estimated as lying somewhere in the shaded 
area, based on the results for M = 9. 

at fixed values of hr .  This irregularity appears to be associated with the occurrence of 
branch points in the eigenvalues in the complex h plane. Unfortunately, it precludes 
the use of finite-size scaling sequence extrapolation methods (Hamer and Barber 
1981b, Hamer 1981) to estimate the bulk limit, and so much of the power of the 
finite-lattice method is lost. Nevertheless, the raw finite-lattice sequence converges 
rapidly enough to allow an accurate estimate of the bulk limit at large values of hI, 
as illustrated by the full lines in figure 3. 
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4 
Figure 3. The imaginary part of the metastable vacuum energy per site, Im(E6 ), as a 
function of hI ,  for three different values of hR. The broken lines are finite-lattice results, 
labelled by the lattice size M. The full lines represent the ‘bulk limit’ (as defined in 8 3), 
where it can be estimated to an accuracy within the width of the line. All results are at 
fixed coupling x = 0.8. 

At small values of hI, the finite-lattice sequence becomes much less rapidly 
convergent, and the bulk limit cannot be estimated directly with any confidence. This 
provides a priori evidence of a singularity in the neighbourhood. Our object now is 
to estimate the quantity 

A = lim Im(E:’). 
h l - 0  

(7) 

A non-zero value of A corresponds to a discontinuity in the imaginary part, by the 
real analyticity property (3). Since finite-lattice sequence extrapolation methods 
(Hamer 1981) are useless in this case, the only method open to us is to perform an 
analytic continuation from the bulk limit estimated at larger hI. 

Our procedure for doing this runs as follows. First, the bulk limit is taken equal 
to the metastable eigenvalue for M = 9 (the largest lattice size available) for values 
of h I  above some cut-off where sufficient convergence has been obtained. Next, this 
limiting curve is fitted with linear and quadratic forms at various values of h I  above 
the cut-off t, and those forms are extrapolated to the axis h I  = 0. Some typical results 

t For instance, the linear form used is simply the tangent to the bulk limit. 
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for the extrapolated values are depicted in figure 4. From these one may form an 
estimate of A, as illustrated in figure 4; the discrepancy between the linear and 
quadratic extrapolants provides some idea of the likely error. 

0 01 02 03  0 4  0 5  
4 

Figure 4. Linear and quadratic extrapolants for the value of A,  as a function of the point 
h I  at which the series fits were made (see 53). The broken lines are straight-line fits; the 
marked square is the final estimate of A.  All results are at a fixed value of the coupling 
x = 0.8, and h R  = -0.2. A cut-off has been applied at hl = 0.18. 

This procedure is open to serious question. After all, the M = 9 eigenvalue is a 
function, usually analytic:, which fits the ‘bulk limit’ (as defined above) exactly; yet 
its imaginary part at hl is always zero, since H is a finite, Hermitian matrix in that 
case. It is only on the assumption that the bulk limit is relatively smooth, and shows 
no great increase in curvature near the real axis, that one can place any great reliance 
on our estimates. This assumption is reasonable provided one is well away from any 
second-order critical point. In any case, there seems to be no alternative method 
available in the circumstances. 

The resulting estimates of A are listed in table 1. Two points are worth noting. 
First is the occurrence of estimates for x = 1, which should be excluded according to 
the stability limit of figure 2. This is possible because the stability limit recedes at 
finite values of h I ,  allowing the procedure outlined above to be carried out even as 
x + 1 :  the resulting estimates may be regarded as limiting cases. Secondly, no useful 
estimates were possible at small x and large hR: indeed, there was no real evidence 
of any finite discontinuity at all in that region, and we can only assume that the ‘break’ 
to discontinuous behaviour occurs at lattice sizes M > 9. 

In figure 5 the estimates of A are plotted against hR,  for a particular coupling value 
x = 0.8. Also shown is a fit of the form predicted by Giinther er a1 (1980), and Lowe 

t Though not always: oide the branch points mentioned above. 
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Table 1. Estimates of A as a function of coupling x and magnetic field hR. 

X 

hR 0.2 0.4 0.5 0.6 0.8 1.0 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 

(O* 1)E-9 
(0 * l )E - 9 
(O* 2)E -9 
( O l t  3)E-9 
(6* 2)E -6 
(70*25)E-6 
- 
- 

(Oi 5)E-7 
(O* 1)E-6 
(9 *4)E - 6 
(8*2)E - 5  
(64*4)E- 5 
(21 * 2)E -4 
- 
- 

(O* 3)E -6 
(O* 1)E- 5 
(1 * l )E -4 
(65 f 20)E - 5 
(27 * 2)E-4 
(60 f 2)E -4 
(6 * 2)E - 3 
0.017 0.001 

(-4 * 5)E- 5 
(0*4)E - 5  
(4*3)E-4 
(30*6)E-4 
(75 f 5)E-4 
0.013 *0.001 
0.018*0.002 
0.035 k0.005 

(-4*4)E-4 (-lr t4)E-3 
(O*4)E-3 0.009*0.01 
0.006i0.003 0.025 ztO.01 
0.020 * 0.003 0.042*0.01 
0.031*0.005 0.062*0.01 
0.038*0.005 0.082*0.007 
0.056 * 0.005 0.106 i 0.005 
0.08*0.01 

IhRI 

Figure 5. Graph of A against I h ~ l  for x =0.8. The data points are our finite-lattice 
estimates, and the full line is a fit of the form (8), with A = 0.25 and B = 0.14. 

and Wallace (1980): 

A = B l h ~ /  exp(-AlIh,I), (8) 
with A = 0.25, B = 0.14. It can be seen that the data are well fitted. In figure 6, the 
quantity log(A/lhRI) is plotted against l /(hRI,  for various values of x. The predicted 
form (8) corresponds to a straight line on this plot, and it is clear that straight lines 
fit the data quite well. 

From these straight line fits, the parameters A and B may be estimated in each 
case, and the results are listed in table 2. The values of B show little dependence on 
the ‘temperature’ variable x ; while A appears to diverge at low temperature, and to 
vanish as x + 1. This matches the sort of behaviour found by Baker and Kim (1980). 
The data are not sufficient, however, to test the critical behaviour of A near x = 1 
(cf Baker and Kim). 
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l/lh,l 

Figure 6.  Graph of lOg,,(h/lhR~) against l/lhRl for various values of x. The data points 
are our finite-lattice estimates, and the broken curves are straight lines drawn through 
each set of data points. 

Table 2. Estimates of the parameters A and B, as a function of coupling x. 

X A B 

0.2 4.4* 1 0 .9 i0 .8  
0.4 1 .750 .2  0.12 * 0.04 
0.5 0.895 0.1 0.07 * 0.02 
0.6 0.70*0.1 0.10 * 0.02 
0.8 0.25*0.1 0.14*0.03 

(1.0 0.13 0.1 0.21 *0.02) 

4. Discussion 

A priori evidence for a cut on the negative h axis has been found in the slow convergence 
of the finite-lattice eigenvalues in that neighbourhood. The magnitude of the cut has 
been estimated by an extrapolation method from the results at complex h.  It is in 
good agreement with the form for the essential singularity, equations (1) and (8), 
proposed by Gunther et al (1980). 

These results provide the first direct estimates, as far as we know, of the discon- 
tinuity A. But since our extrapolation method is open to some doubt, as discussed in 
§ 3, it would be useful to check the results for A and B against series estimates, similar 
to those of Baker and Kim (1980), in the field theory formulation. Conversely, it 
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would be useful to compute finite-lattice estimates similar to ours in the Euclidean 
regime, using for instance the methods of Nightingale and Blote (1980). An even 
more powerful technique might be to use variational methods such as those of Baxter 
and Tsang (1980). 
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